
April 2024

SiteVisor
Digital Twin Application for Buildings Monitoring and Asset Management

FINAL REPORT

NAME: Grzegorz Piotrowski

STUDENT ID: 20099926

SUPERVISOR: Caroline Cahill

MODULE: Project

COURSE: Higher Diploma in Computer Science

2

Acknowledgements

I would like to thank my wife Julita, for her support and encouragement throughout my

work on this project and the whole journey through the course.

Sincere thanks to my supervisor, Caroline Cahill, for insightful suggestions, and valuable

meetings which kept me focused and on track to reach this milestone.

Lastly, great appreciation to all the lecturers and staff involved in the Higher Diploma in

Computer Science course. This was a truly amazing experience and the knowledge and skills

I was able to gain are a testament to your commitment.

3

Preface

The report should be read together with the following:

Project Board: https://github.com/users/grzpiotrowski/projects/2/views/2

Project Roadmap: https://github.com/users/grzpiotrowski/projects/2/views/3

Repositories:

Main repository: https://github.com/grzpiotrowski/sitevisor-project

Frontend: https://github.com/grzpiotrowski/sitevisor

Backend: https://github.com/grzpiotrowski/sitevisor-backend

Sensor code: https://github.com/grzpiotrowski/sitevisor-sensors

Application Documentation: https://grzpiotrowski.github.io/sitevisor/

https://github.com/users/grzpiotrowski/projects/2/views/2
https://github.com/users/grzpiotrowski/projects/2/views/3
https://github.com/grzpiotrowski/sitevisor-project
https://github.com/grzpiotrowski/sitevisor
https://github.com/grzpiotrowski/sitevisor-backend
https://github.com/grzpiotrowski/sitevisor-sensors
https://grzpiotrowski.github.io/sitevisor/

4

Declaration

I declare that the work which follows is my own, and that any quotations from any

sources (e.g. books, journals, the internet) are clearly identified as such by the use of

‘single quotation marks’, for shorter excerpt and identified italics for longer

quotations. All quotations and paraphrases are accompanied by (author, date) in the

text and a fuller citation is the bibliography. I have not submitted the work

represented in this report in any other course of study leading to an academic award.

Student ……………………………………………………….. Date ……………………………

5

Abstract

SiteVisor is a Digital Twin-based web application for environmental monitoring of

buildings with elements of asset management. At the core of the user interface and

experience is an interactive 3D viewer, rendering a representation of a building and

the IoT sensors placed inside it.

The design philosophy is centred around simplicity, with that even users with

minimal technical background can create and interact with the digital twin. With only

a few clicks we can set up our 3D environment from scratch, by simply sketching out

rooms and creating virtual representations of sensors and configuring the data

connection from their physical counterparts. This spatial context can enhance the

understanding of IoT data and subsequently we can bring out more information from

this data.

The users can manage multiple projects, each representing different buildings or

sites. Sensor data can be visualised on graphs or as a live heatmap directly in the

model.

The application is deployed on Kubernetes and uses Strimzi operator to run

Apache Kafka cluster, which is the heart and arteries of the whole system. This

approach enables scalability and robustness.

6

Table of Contents

Acknowledgements .. 2

Preface ... 3

Declaration ... 4

Abstract .. 5

Table of Contents ... 6

List of Figures ... 8

List of Tables ... 10

1. Introduction ... 11

1.1. Background .. 11

1.2. Problem statement .. 12

1.3. Proposed solution .. 12

2. Research and Analysis .. 13

2.1. Digital Twin ... 13

2.2. Existing solutions.. 15

2.3. Digital Twin Platforms .. 16

2.4. Digital Twin Architecture .. 19

2.5. Technologies ... 20

2.5.1. Kubernetes ... 20

2.5.2. Apache Kafka .. 20

2.5.3. Strimzi .. 21

2.5.4. Three.js ... 21

2.5.5. Technologies choice ... 23

3. Design and Modelling .. 24

3.1. User Personas... 24

3.2. Planned Features ... 25

3.3. Considered Architectures ... 26

3.4. User Interfaces design .. 29

4. Planning.. 32

4.1. GitHub Projects .. 32

4.2. Development Process .. 34

5. Implementation ... 37

5.1. Prototyping .. 37

5.2. Final architecture ... 39

7

5.2.1. Database and Data Model ... 40

5.2.2. Digital Twin Class Diagram ... 40

5.2.3. Real-time Data flow ... 41

5.3. Implemented Features ... 44

5.3.1. User signup and login ... 44

5.3.2. Creating and managing Projects .. 44

5.3.3. Adding and managing Rooms .. 47

5.3.4. Adding and managing Sensors ... 51

5.3.5. Adding objects to Digital Twin ... 53

5.3.6. Creating and editing Issues .. 54

5.3.7. Real-time Data Heatmap .. 57

5.4. Deployment .. 59

5.4.1. Container images ... 60

5.5. Documentation .. 61

6. Reflection ... 62

6.1. Learnings .. 62

6.2. Achievements ... 63

6.3. Overcoming Challenges.. 64

6.3.1. Project architecture and structure ... 64

6.3.2. Django and MongoDB .. 64

6.3.3. Kafka-WebSocket connection .. 65

6.3.4. WebSocket connection to Kubernetes ... 65

6.4. Future Development .. 65

Bibliography ... 67

Appendix A – Export from GitHub Project Roadmap (formatted) ... 70

Appendix B – Ethical Approval Checklist .. 72

8

List of Figures

Figure 1. Digital twin conceptual architecture as per (Parrott & Warshaw, 2017). 14

Figure 2. Internet of Things and digital twin end-to-end solution architecture as per (Joshi,

2023). ... 14

Figure 3. BIM model of Newcastle University’s Urban Sciences Building accessible on Urban

Observatory website. ... 15

Figure 4. Autodesk Forge Digital Twin Demo. .. 16

Figure 5. Example Cookie factory Digital Twin dashboard built with AWS IoT TwinMaker and

Amazon Managed Grafana (Amazon, 2024). ... 17

Figure 6. Azure Digital Twins 3D Scenes Studio (Microsoft, 2022). ... 18

Figure 7. Overview of the IoT system architecture with a focus on the Digital Twin platform

(Nölle, et al., 2022). .. 19

Figure 8. Kafka architecture (Fu, et al., 2021). ... 20

Figure 9. Diagram representing objects in a small three.js application (Three.js, 2024). 22

Figure 10. Example Three.js scene showcasing the camera object and wireframe rendering.

.. 22

Figure 11. Example Three.js scene showcasing advanced materials rendering. 23

Figure 12. Application architecture overview - minimal variant 2. ... 27

Figure 13. Application architecture overview - minimal variant 1. ... 28

Figure 14. Sensor connection to Kafka Cluster – extended variant. .. 28

Figure 15. Projects View wireframe. .. 30

Figure 16. 3D Digital Twin View wireframe. ... 31

Figure 17. Dashboard View wireframe. ... 31

Figure 18. Maintenance Tasks View wireframe. .. 32

Figure 19. Project SiteVisor agile board. .. 33

Figure 20. Project SiteVisor roadmap in GitHub Projects. ... 34

Figure 21. Example of a Pull Request in the project. ... 35

Figure 22. Example of an “epic” GitHub issue used in the project. ... 36

Figure 23. Initial Three.js scene with a Helper Grid, Coordinate Axes, and a simple cube. 37

Figure 24. Early prototype of the interface for creating rooms and sensors. 38

Figure 25. Saving and loading the rooms and sensors from the backend. 38

9

Figure 26. Key components of the implemented project architecture. 39

Figure 27. Database UML diagram. .. 40

Figure 28. Class diagram for the Three.js scene objects implementing the Digital Twin model.

.. 41

Figure 29. Sensor real-time data flow diagram. ... 41

Figure 30. Realtime sensor data flow diagram from Kafka Topics perspective. 42

Figure 31. Example of a message send from the sensor. ... 42

Figure 32. Minimal hardware setup for testing, using DHT11 temperature and humidity

sensor with Raspberry Pi 4B. ... 43

Figure 33. Realtime Data Status listing all Kafka topics connections configured. 43

Figure 34. User login page. .. 44

Figure 35. Project listing page enabling to create a new project. ... 44

Figure 36. Project management page. ... 45

Figure 37. Project configuration example with two Kafka topics and additional sensor type.46

Figure 38. Digital Twin/3D Viewer page in a new project. ... 46

Figure 39. Room creation form. ... 47

Figure 40. Room colour picker. ... 48

Figure 41. Room creation mode with the green preview shape indicating the location of the

new room. .. 48

Figure 42. Room layout in the 2D display mode. ... 49

Figure 43. Deleting a Room. ... 49

Figure 44. Room details page. .. 50

Figure 45. Sensor creation form. .. 51

Figure 46. Newly created sensor and the real-time data. ... 51

Figure 47. Sensor Details page. .. 52

Figure 48. Components used to create an object (Room or Sensor) in the project. 53

Figure 49. Issue creation form in the 3D Viewer. ... 54

Figure 50. Page listing Issues in the project. .. 54

Figure 51. Create New Issue form in Issues listing page. ... 55

Figure 52. Issue Details page in the viewing mode. ... 56

Figure 53. Issue editing form. .. 56

Figure 54. Early experiment with the sensor data heatmap implementation......................... 57

10

Figure 55. Final implementation of the sensor data heatmap – temperature example. 58

Figure 56. Final implementation of the sensor data heatmap – humidity example. 58

Figure 57. SiteVisor system deployment steps in Kind cluster. .. 59

Figure 58. Kubernetes Cluster ingress. .. 60

Figure 59. Kubernetes Pods in the cluster as seen in K9s tool. ... 60

Figure 60. SiteVisor Documentation website hosted on GitHub Pages. 61

Figure 61. Project documentation page describing Kafka deployment steps. 62

List of Tables

Table 1. Summary of feature implementation. .. 63

11

1. Introduction

1.1. Background

Considering my previous background in geomatics, I have been interested in ways of

capturing and representing the physical environment around us for quite a long time now.

Most commonly this is done through 2D maps and plans, or increasingly often in case of

buildings and infrastructure, through complex 3D models. All these representations however

have one thing in common – they capture the state of the modelled object at a specific point

in time. Therefore, they are technically outdated almost immediately after being created.

In case of relatively static objects, like the structure of a small building, we can assume

that the state has not changed significantly and ignore this issue. That said, almost any

functioning building today is more than just a shell of the roof and walls and contains plenty

of dynamic systems which all work to provide a comfortable environment for the people

inside the building.

To gain some insight into the state of these systems and environment, we could perform

periodical inspections and measurements. This seems like a costly and time-consuming

process, giving us yet another snapshot approximating the real state of the system, which

also quickly becomes outdated. For this reason, installing various sensors across the building

comes to mind as a valid solution to this information deficit. The sensors can, for example,

measure the basic environmental parameters like temperature, humidity, light levels, CO2

concentration and many other factors including vibrations and motion of the structure.

Assuming we have now installed all the sensors across the building, we are getting a rich

stream of data, that in the simplest solution would get written somewhere and provide no

real meaning to the interested parties. That is, until it gets organised, processed, and put

into context, which brings us from data to information (Galbraith, 2023).

Going further with this thought process, we should now connect the data stream to

some form of a hub where it would be annotated, organised, and then presented to the

user, perhaps in a table or graphed as a time series. This might work great for a few sensors,

but we could easily get lost in a long list of devices when dealing with more complex

buildings and systems.

12

This finally brings us to the vision for this project, which aims to utilise the benefits of 3D

models and visualisation and bring all the information together in a form of digital

representation of a building, its components, relevant content, and with sensor data

incorporated into it. This is not a new concept conceived here by any means, and it is already

existing and called a digital twin.

1.2. Problem statement

To recap the issues described in the previous section shortly:

• Limited insight into the status of building systems and environmental conditions.

• Dependency on outdated and static representations of buildings and infrastructure.

• Inefficient and costly periodic inspections for assessing system performance and

condition.

1.3. Proposed solution

An application that provides:

• Continuous feed of environmental sensor data.

• Integration of sensor data into a digital twin representation of the building.

• Enhanced user experience through intuitive interfaces and interactive 3D

visualisation tools.

• Sensor and asset management through issues/maintenance tasks.

13

2. Research and Analysis

2.1. Digital Twin

As hinted in the introduction, a digital twin is a virtual replica of a physical object,

system, or process, which accurately represents its real-world counterpart. This model is

updated dynamically by integrating data from various sources, such as physical sensors and

predictions in a digital environment. This approach provides the best current approximation

of the state, performance, and operation of the physical object. Digital twin technology

enables users to gain better understanding of the real-world subject through analysis,

monitoring, and simulation (Rajamurugu & Karthik, 2023).

A conceptual architecture of a digital twin in the context of manufacturing is shown

below, created by (Parrott & Warshaw, 2017). They presented it as a sequence of steps:

1. Create – referring to the sensors around the physical asset and the process.

2. Communicate – real-time bidirectional communication, highlighting edge

processing, interfaces, and edge security.

3. Aggregate – data ingestion into a database and preparation for analytics.

4. Analyse – utilising advanced analytics technologies to aid decision-making.

5. Insight – presenting the results through dashboards with visualisations.

6. Act – insights feed back into the physical asset, completing the loop.

14

Figure 1. Digital twin conceptual architecture as per (Parrott & Warshaw, 2017).

In a sense, digital twin builds on top of the internet of things and provides a way of

contextualising the IoT data. The relation between IoT and Digital Twin in an example system

architecture is shown below:

Figure 2. Internet of Things and digital twin end-to-end solution architecture as per (Joshi,

2023).

15

2.2. Existing solutions

One of the implementations showcasing a 3D model enhanced with IoT sensor data is

the Newcastle Urban Observatory portal (UKCRIC, 2023) and specifically the representation

of the Urban Sciences Building at Newcastle University. The building has more than 4000

sensors, monitoring various aspects of the environment like temperature, humidity, CO2

concentration, air pollution and light brightness level (CIBSE, 2018).

Figure 3. BIM model of Newcastle University’s Urban Sciences Building accessible on Urban

Observatory website.

As shown in the image above, the user can view the real-time data from various sensors

around the building. The red cubes are representing rooms and zones in the building and

after clicking on them, an overlay window shows readings from sensors associated with that

zone. This is very intuitive in terms of navigating around the rendered environment.

However, besides the monitoring capabilities the user cannot affect the system in any way.

This is an area of potential improvement in terms of interactive features that SiteVisor can

provide.

16

The next example is Forge Digital Twin Demo, created by (Autodesk, 2022) and

showcasing the use of their Forge platform in the context of digital twins. It enables to view

a detailed 3D model of an asset and monitor its real-time performance. There is also

a feature allowing to view and create issues related to specific parts of the asset as shown

below.

Figure 4. Autodesk Forge Digital Twin Demo.

2.3. Digital Twin Platforms

Cloud services providers are offering their platforms for digital twins as a service (PaaS)

enabling their customers to create digital models of entire environments. Two of the

platforms that seem to stand out the most are Amazon’s AWS IoT TwinMaker (Amazon,

2024) and Microsoft’s Azure Digital Twins (Microsoft, 2024). It is important to note that

project SiteVisor did not aim to recreate a general platform for creating digital twins, but

rather to provide an easy-to-use application and code-free means for facility managers to

create digital twins of buildings and manage the rooms and sensors inside them.

17

Figure 5. Example Cookie factory Digital Twin dashboard built with AWS IoT TwinMaker and

Amazon Managed Grafana (Amazon, 2024).

Both platforms offer an interactive visual 3D environment (Figure 5, Figure 6), where

users can monitor and investigate operational digital twin data. The offerings have an

advantage of close integration with other cloud services from the providers and are

designed to handle large number of models and devices with scalability as needed.

18

Figure 6. Azure Digital Twins 3D Scenes Studio (Microsoft, 2022).

Together with great capabilities of these systems, comes complexity in setup and

management, requiring a steep learning curve. One of the disadvantages of these platforms

could be the potential need for integration with non-Azure or non-AWS infrastructure, as the

users might already have their IoT systems deployed with different cloud providers.

19

2.4. Digital Twin Architecture

Research literature is quite plentiful on the topic of digital twins. There are also many

books which go into the subject in depth. The goal of researching the publications was to

gain insight into the best practices, any established standards and fitting system

architectures.

Figure 7. Overview of the IoT system architecture with a focus on the Digital Twin platform

(Nölle, et al., 2022).

The diagram above shows a typical system architecture for a Digital Twin platform (Nölle,

et al., 2022). As intuited in the initial phase of the project ideation, the usual architecture

utilises a central data broker, which gathers data from the IoT devices. From there, the data

can be streamed to the digital twin applications but also stored in a dedicated database.

In the diagram, the dashed arrows originate from the platform and point towards the broker

and the raw database, to indicate the data flow that is on-demand. In contrast, the stream of

sensor data from the devices to the broker is continuous.

20

2.5. Technologies

This section provides an overview of the main technologies researched and selected for

the SiteVisor project.

2.5.1. Kubernetes

Kubernetes is an open-source platform for running and scheduling containerised

workloads on multiple hosts (Rosso, et al., 2021). In short, it can be described as a container

orchestrator. It was picked as a platform for this project due to its flexibility, networking

capabilities, automated scaling and load balancing which can facilitate a growing digital twin

system.

2.5.2. Apache Kafka

Apache Kafka is a distributed streaming platform that functions as a publish-subscribe

messaging system designed to handle high volumes of data in real-time. It provides storage

and allows for continuous processing of data streams. Kafka is commonly used in real-time

streaming data pipelines and applications (Scott, et al., 2022). Kafka might be too powerful

for this project and heavily underutilised, but this choice was made mostly based on my

desire to learn this technology.

Figure 8. Kafka architecture (Fu, et al., 2021).

21

Key terminology describing Kafka components:

• Broker – server, receives messages from Producers and allow Consumers to fetch

them.

• Cluster – multiple Kafka Brokers as a distributed set to increase availability.

• Topic – a category for streams of data. Every message received by a broker is

written to a topic log.

• Partition – a subset of a given topic, used to spread the load and facilitate data

sharding.

• Producer – external application which sends messages to a topic.

• Consumer – external application that receives messages from a topic.

• Zookeeper – coordinates all the brokers in a cluster.

2.5.3. Strimzi

Strimzi is an open-source project which simplifies the process of running Apache Kafka

on Kubernetes. Operators provided by Strimzi make the administration tasks easier and

reduce the manual intervention required to manage Kafka cluster. For this reason, Apache

Kafka deployed by Strimzi Operator was picked as the backbone of the project architecture.

2.5.4. Three.js

Three.js is a powerful 3D JavaScript library which enables to create and animate 3D

scenes rendered in real time in the browser. It uses WebGL which is supported by modern

web browsers but makes the development of 3D scenes a lot easier (Dirksen, 2023). Some of

the features possible with Three.js are:

• Creating 3D geometries and rendering them in the browser.

• Animating/moving objects in a 3D scene.

• Texturing and applying materials to objects.

• Adding post-processing effects to the rendered scene.

• Loading assets from 3D modelling software and exporting models into files.

• Creating virtual reality (VR) and augmented reality (AR) experiences with WebXR

(Immersive Web, 2024).

22

Figure 9. Diagram representing objects in a small three.js application (Three.js, 2024).

The image below shows a very basic animated 3D scene divided into two views, the one

on the right highlights the current camera orientation and its field of view (orange) and the

one on the left is the view from that camera looking at orbiting wireframe spheres.

Figure 10. Example Three.js scene showcasing the camera object and wireframe rendering.

The next example (Figure 11) showcases a 3D model loaded from a file and rendered

with more impressive details achieved with advanced reflective and transmissive materials.

23

Figure 11. Example Three.js scene showcasing advanced materials rendering.

The possible integration of 3D models from external software is a huge benefit for a

digital twin project. This means that users who already have an existing model of their

building could import that model into the 3D scene, which would provide an excellent

context for the data. Three.js supports many file formats, like OBJ, PCD (for Point Cloud

Data), STL (commonly used for 3D printing) and GLTF, which became a standard for

exchanging models and textures (Dirksen, 2023).

2.5.5. Technologies choice

Below is a short summary of the technologies chosen for the project:

• IDE: Visual Studio Code

• Version Control: Git, GitHub

• Project Management: GitHub Projects

• Containerisation: Docker, Kubernetes, kind

• Backend: Django

• Database: PostgreSQL (Changed from MongoDB initially), CloudNativePG

• Communication: Kafka, WebSocket

• Continuous Integration: GitHub Actions

• Frontend: TypeScript, Three.js, Vite, Svelte/SvelteKit

• Hardware: Raspberry Pi 4B and DHT11 sensor

24

3. Design and Modelling

3.1. User Personas

To focus the design of the application, it was necessary to identify key personas and their

main possible use cases for the project. Different personas in a building environment, such

as facility managers, technicians or environmental engineers work with different

components of the digital twin and within different scope. The following is an example of

what different persona would require from the application and the digital twin:

Project owner - user which created the project:

• Edit project details,

• Delete project,

• Change user roles within the project,

• Add/Edit/Delete all elements of the Digital Twin.

Facility Manager:

• View project overview,

• Create maintenance tasks,

• Assign technicians to the maintenance tasks,

• Add/Edit/Delete assets,

• Generate reports on assets and sensors.

Technician:

• View the digital twin,

• Is assigned to maintenance tasks,

• View maintenance tasks list,

• Update/close maintenance tasks.

Environmental engineer:

• Add/Update/Delete sensors,

• Create maintenance tasks,

• View and analyse real-time and historical sensor data.

25

3.2. Planned Features

The list below shows features initially planned for the application:

• 3D visualisation of a building.

• Navigate freely around the scene with an orbit camera.

• Interact with the objects in the scene directly.

• Add rooms to create a simple building model from scratch.

• Upload a 3D model as GLTF file, serving as a more accurate reference for the user.

• Multiple levels in the digital twin of a building:

o User able to switch between levels/floors,

o Reference plane and the camera would move up or down and rooms and

sensors belonging to the level would be shown and the rest hidden.

• View/Add/Update/Delete sensors in the model:

o Each sensor would get automatically assigned to a room and a level,

o The user will select the type of a sensor from the sidebar menu.

• View/Add/Update/Delete assets in the model:

o An asset would be a general representation of any object that user wishes to

track and monitor in the Digital Twin. This could be any equipment, but some

examples would be heating system elements, electrical panels, fire

extinguishers or smoke detectors.

o Maintenance task could be associated with an asset.

• View/Add/Update/Delete maintenance tasks in the model:

o Maintenance tasks can be associated with a sensor or an asset object.

o Technician (user) can be assigned to a task.

• Sensor data dashboard:

o Display charts with historical sensor data.

o Display real-time data.

• Automated notifications and alerts:

o Users able to set up thresholds for sensor readings.

o Alerts for abnormal sensor readings.

o Notifications about maintenance task deadlines.

26

• Sensor simulation

o Users able to add a simulated sensor to the scene and analyse how it affects

the overall system.

o Notifications and alerts based on simulated data (to test the system).

Summary and reflection on the features implemented in the project can be found in

section 6.2 (Achievements) of this document.

3.3. Considered Architectures

The application was designed with Apache Kafka at its core. Kafka Cluster is deployed

and managed by Strimzi operator in Kubernetes cluster. Since the system was required to

provide real-time data for the users, messages from Kafka cluster needed to be forwarded to

the browser continuously. Long polling the Kafka Cluster was briefly considered, but

Websockets are more efficient for this task. However, the latter approach introduces more

complexity and poses a challenge – Websocket connection cannot be established directly to

the Kafka Cluster out of the box and there is a need for a component which would bridge

this gap.

One solution was to find an existing tool for this task, or if there is no right project

available, to build a bespoke Websocket bridge for Kafka, which would likely turn into

a separate project itself.

This rejected architecture variant is shown in the diagram below. This approach could be

perhaps more tailored for the specific use in the SiteVisor project and could possibly be

easier to manage but, as mentioned, it would require additional resources to implement,

and it was decided not to go that route.

27

Figure 12. Application architecture overview - minimal variant 2.

Out of a few options available, I have settled on an existing solution named Kafka

WebSocket Proxy (kpmeen, 2023). The project does not seem to be very popular with only

4 Stars on GitLab and 10 Stars on its mirrored repository on GitHub. However, it has pretty

good documentation and is not abandoned like some of the other similar projects and

seemed like a good fit for SiteVisor overall.

28

Figure 13. Application architecture overview - minimal variant 1.

The variant shown above is the one chosen to be implemented and it uses the Kafka

WebSocket Proxy project mentioned earlier to establish a data stream between the Kafka

Cluster and a WebSocket client in the browser.

Regardless of the chosen approach, both architectures can be additionally extended by

enabling incoming data streams from sensors using various protocols like HTTP or MQTT.

This can be achieved by incorporating Kafka Bridge for HTTP communication and MQTT

Bridge for MQTT clients.

Figure 14. Sensor connection to Kafka Cluster – extended variant.

29

3.4. User Interfaces design

Besides the Digital Twin 3D View, the application was designed to have additional

views/pages listed below:

• Signup page – allows users to create new accounts.

• Login page – enables registered users to log in and gain access to the application

features and projects.

• Add Project page – users can create new projects, which will represent sites or

buildings that the user wants to monitor and manage.

• Projects list page – displays the list of all projects accessible to the user and their

role/access level.

• Project manager page – designed as a central hub for a specific project, where users

can monitor and manage assets, sensors, and maintenance tasks.

• 3D Viewer/Digital Twin page – focal point of the application where majority of user

interaction will take place. Renders a 3D digital twin of the building or site, with

sensors, assets, and real-time data heatmap overlays. Users can navigate through the

virtual environment and interact with the objects in the scene to view more detailed

information and add new objects.

• Historical data page - presents an overview of the archived sensor data, where users

can view trends and analyse patterns over time to aid with decision making.

• Room page - focuses on a specific room within the building, displaying details and

sensor data related to that specific space. Also lists all assets located in the room.

• Sensor list page - displays a list of all sensors associated with the project, allowing

users to view and manage sensor configurations and data.

• Sensor details page - provides detailed information about a specific sensor, including

real-time data readings, historical trends, and configuration settings.

• Asset list page - displays a list of all assets within the project, providing a quick

overview of all objects of interest to the user.

• Asset details page – presents detailed information about a specific asset, such as

equipment specification, maintenance history and current state.

30

• Maintenance tasks list page - displays a list of tasks relevant to the user, grouped in

categories.

• Maintenance task creation page - allows users to create maintenance tasks,

specifying details like task type, priority, and assign technicians.

• Maintenance task details page - detailed view of a specific maintenance task,

including status, assigned technician and comments on the task.

Each of the detail view pages, like individual sensor, maintenance or asset page should

also link the user to the specific location in the 3D digital twin.

Wireframes in the following images were created using Figma design tool and show

concepts of the key pages for the project.

Figure 15. Projects View wireframe.

31

Figure 16. 3D Digital Twin View wireframe.

Figure 17. Dashboard View wireframe.

32

Figure 18. Maintenance Tasks View wireframe.

4. Planning

4.1. GitHub Projects

GitHub Projects was used as the project management tool. A GitHub Project consists of

a spreadsheet, task-board (Figure 19) and road map (Figure 20) which integrates with GitHub

issues and pull requests automatically (GitHub, 2023). Since GitHub is the platform of choice

for the SiteVisor project version control, GitHub Projects was a fitting solution to manage

and keep track of the development progress.

Issues and Pull requests from all repositories were added to the SiteVisor project, which

can be seen below.

33

Figure 19. Project SiteVisor agile board.

Figure 20 shows a fragment of the Project Roadmap which was continuously updated

while planning and progressing on the project. An export of the issues from the roadmap is

included at the end of this report as Appendix A – Export from GitHub Project Roadmap

(formatted).

34

Figure 20. Project SiteVisor roadmap in GitHub Projects.

4.2. Development Process

During the development of the project, I adapted a certain rhythm to the process. This is

nothing remarkable perhaps and based around Git/GitHub Flow process, but it was crucial to

keeping the progression at a steady pace, especially in the very busy final phase of the

implementation. Below is a brief outline of the usual steps:

1. Check the roadmap in GitHub Project to see what is planned for the day.

2. Make any changes to the schedule if necessary.

3. Pick an issue to work on based on the priorities set as labels.

4. Create a branch for the feature.

5. Work on the implementation and commit changes locally.

6. After some progress was made, push changes to the feature branch on remote.

7. Open a Draft Pull Request on GitHub and write a short description – this allowed

me to step back and think again on what is already done and what needs to be

done.

35

8. Continue working on the implementation, pushing commits to the remote branch

regularly.

9. When stopping work for a longer time, leave a comment stating what still needs

to be done. This helps when coming back to work on the issue.

10. After the feature is ready, change the Pull Request PR status to ready for review.

11. Review the files changed, ticking the Viewed checkbox after checking each file.

12. Leave a Review comment for yourself to mark the completion of the task.

13. Merge the feature into the main branch.

14. Closing the issues is handled automatically through the keywords (“Closes”,

“Fixes” etc.) in the pull request.

Figure 21. Example of a Pull Request in the project.

The image above shows an example of a Pull Request in the project. The detailed

descriptions provide a great documentation of the project throughout its development.

36

I have also used Issues with a custom epic label, to keep track of the progress on a larger

chunk of work which was broken down into multiple smaller issues. The epic issue would

contain these issues listed with checkboxes. A very convenient feature of GitHub is that

completed and closed issues would get automatically marked as done in that list.

Figure 22. Example of an “epic” GitHub issue used in the project.

37

5. Implementation

5.1. Prototyping

Towards the end of the research phase of the project, I started the prototyping work to

gauge the feasibility of the planned features. This was both for the frontend, focusing on the

3D Viewer aspect, and the backend, learning more and deploying Kafka and testing data

pipelines.

Like many projects based around a 3D environment, it all started with a cube, as shown

in the image below.

Figure 23. Initial Three.js scene with a Helper Grid, Coordinate Axes, and a simple cube.

The prototype has then evolved to include more interaction like mouse controls of the

camera and basic interaction with the Helper Grid which became a reference plane for the

cursor to interact with. At every frame, the intersection between the reference plane and

the ray originating from the camera and passing through the cursor is checked in the

animation loop. The same principle applies for checking if any other object from the 3D

scene is currently under the cursor.

38

Figure 24. Early prototype of the interface for creating rooms and sensors.

These basic control and interaction components allowed to experiment with the

implementation of adding objects to the 3D scene and changing the state of the 3D

environment through menu buttons. The image above shows the sidebar menu and adding

Room and Sensor objects to the scene. At this stage there was no data persistence yet.

Figure 25. Saving and loading the rooms and sensors from the backend.

The next step in the prototyping phase involved saving and loading the objects to and

from the backend database. At this stage the

The initial prototype for the backend involved deploying a Kafka cluster using Strimzi

Quick Starts documentation (Strimzi, 2024) and testing the connection, by running a simple

producer to send messages and a consumer to receive them.

39

5.2. Final architecture

The final architecture for the project realises the architecture proposed initially in

section 3.3. The current setup supports the real-time data connection from sensors and

because of Kafka, the backlog of the data is also delivered to the user even after the

connection is re-established after it has been lost.

Figure 26. Key components of the implemented project architecture.

One of the components missing from the original design is the Sink connector from Kafka

Cluster to the Database, which was supposed to archive the data for future use. Due to

difficulties in configuration and prioritising other tasks, this feature was deferred for now.

Also, the planned Sensor component was envisioned to use Kafka protocol, but I could not

get my ingress configured correctly for that to happen, so HTTP Client on the sensor side was

used, coupled with Kafka Bridge in the cluster to receive the data and pass them to the

broker.

40

5.2.1. Database and Data Model

PostgreSQL database was chosen to store the object data. The database was deployed

inside Kubernetes cluster using CloudNativePG operator. Deployment was based on the

instructions in the documentation (CloudNativePG, 2024). The UML diagram below shows

the implemented database model.

Figure 27. Database UML diagram.

5.2.2. Digital Twin Class Diagram

To keep the visualisation in the frontend maintainable, an object-oriented approach was

taken for implementing different objects of the digital twin (Figure 28). Object3D and Mesh

are three.js classes and provide a base for the SiteVisor objects, from which custom classes

41

representing different geometries inherit. These are Volume, Point3D and Plane and provide

a solid base for the objects like the Room and Sensor.

These classes are instantiated in the browser on the 3D Viewer initialisation and are

constructed using the data stored in the database.

Figure 28. Class diagram for the Three.js scene objects implementing the Digital Twin model.

5.2.3. Real-time Data flow

The diagram below provides an overview of the data flow from the physical sensor to its

digital counterpart through Kafka components and the Websocket Proxy.

Figure 29. Sensor real-time data flow diagram.

42

Figure 30. Realtime sensor data flow diagram from Kafka Topics perspective.

The diagram above attempts to show the same data flow but with the focus on Kafka

Topics. This was also an important aspect in the project development. Each Physical Sensor

sends data to a specified Kafka Topic. Kafka-Websocket-Proxy serves each topic in a separate

websocket connection, so we create a Websocket Client per topic. The data is then parsed to

unpack the messages and assign it to a correct Digital Twin Sensor based on the id in the

message (Figure 31).

Figure 31. Example of a message send from the sensor.

43

Figure 32. Minimal hardware setup for testing, using DHT11 temperature and humidity

sensor with Raspberry Pi 4B.

To demonstrate a physical device working with the system, a basic setup using Raspberry

Pi 4B and DHT11 temperature and humidity sensor was built (Figure 32) and a simple code

to read and message to data was developed.

During the development and testing however, scripts simulating the sensors with

randomly generated data were used.

Status of the Websocket connection to each topic is indicated in the application through

a component shown below. Any topic can be clicked to restart the connection if there is any

issue with it.

Figure 33. Realtime Data Status listing all Kafka topics connections configured.

44

5.3. Implemented Features

5.3.1. User signup and login

User authentication is handled by Simple JWT plugin for the Django REST Framework.

Figure 34. User login page.

5.3.2. Creating and managing Projects

After logging in, the user is presented with a list of projects owned by them (Figure 35),

where they can also create a new project by interacting with the last card on the list.

Figure 35. Project listing page enabling to create a new project.

45

Figure 36. Project management page.

After creating the project, we can use the Open button to go into the Digital Twin view or

click the Manage button to enter the project management page (Figure 36). In the latter, we

can see basic details about the project and get the option to update the name and configure

Kafka topics for the project. Types of sensors can also be configured here, with Temperature

and Humidity types added by default.

The image below shows an example of customised project configuration with two Kafka

topics (data-stream-42 and env-03) specified by entering the comma separated topic names

in the appropriate field and the Pressure sensor type added to the project.

46

Figure 37. Project configuration example with two Kafka topics and additional sensor type.

After configuring the project, we can move on to the 3D Viewer by using the Digital Twin

button. The 3D Viewer page is shown in the image below.

Figure 38. Digital Twin/3D Viewer page in a new project.

47

5.3.3. Adding and managing Rooms

One of the key implementations is the ability to add objects representing rooms to the

3D scene. Each time the Add Room form is opened, it randomises the colour for the inserted

room, to help distinguish them from one another.

Figure 39. Room creation form.

The user can also click the colour icon to open a colour picker (Figure 40) and select any

colour of their choice.

48

Figure 40. Room colour picker.

When creating a new room, the room geometry switches to a 2D mode, with the existing

objects flattened, which makes it easier to see the floor layout. The user picks two points

showing the extents of a new room, after they select the first point, a green preview of the

new object is shown, dynamically updating as the cursor moves around the scene (Figure 41

and Figure 42).

Figure 41. Room creation mode with the green preview shape indicating the location of the

new room.

49

Figure 42. Room layout in the 2D display mode.

Rooms can also be selected and deleted by using the button in the popup window.

Figure 43. Deleting a Room.

50

Figure 44. Room details page.

Through the Details button, the user can access a page for each room. It enables to view

latest sensor readings for the sensors inside, together with the list of issues and sensors

inside that room. Also, for each sensor we can click the Go to button which takes us directly

to the location of the sensor in the Digital Twin Viewer.

51

5.3.4. Adding and managing Sensors

Sensors can be inserted in the Digital Twin model similarly to rooms. In the form dialog

(Figure 45) we need to specify the sensor type and ID. This is used to match the sensor with

the data stream.

Figure 45. Sensor creation form.

After selecting the sensor, we can view the data plotted in real time (Figure 46). Also, the

room is automatically assigned to a room based on the position. It works both ways. When

we create a room over existing sensors, they also get correctly assigned together.

Figure 46. Newly created sensor and the real-time data.

52

Figure 47. Sensor Details page.

Each sensor also has a details page which lists the basic details about it and allows to

update the name and ID. Additionally we can view the real-time data plotted onto a chart

and see any existing issues associated with the sensor.

53

5.3.5. Adding objects to Digital Twin

Adding objects to the Digital Twin needed to work on two levels. First, the user inputs

properties of the object (Sensor in the example below) into a standard HTML form. Then the

geometry (position) data is supplemented from the 3D scene. The Object Factory object

handles creation of the object in the Digital Twin Viewer and returns the complete object

(Properties + Position) to be then saved into the database.

Figure 48. Components used to create an object (Room or Sensor) in the project.

54

5.3.6. Creating and editing Issues

One of the features planned for the project was asset management through

maintenance tasks/issues. In the current implementation users can create Issues that are

attached either to a Room or a Sensor object. An Issue can be created either from the Digital

Twin view, by selecting an object and clicking the Add Issue button (Figure 49), or directly in

the Issues listing page.

Figure 49. Issue creation form in the 3D Viewer.

Issue creation forms displayed in the Digital Twin view do not have the Object and Object

Type fields, because the object has already been selected in the 3D environment.

When the user creates a new issue from the Issues page, as shown in Figure 51, they

must pick the Object Type first (Sensor or Room) and then they can pick the object by its

name from the Object dropdown list, which is dynamically populated from the project data.

Figure 50. Page listing Issues in the project.

55

Figure 51. Create New Issue form in Issues listing page.

Issues can have one of the four states:

• Opened – issue created but no work started yet.

• In Progress – work on the issue started.

• Resolved – work on the issue completed.

• Closed – issue not relevant anymore, and not completed for any reason.

A user can be assigned to an issue by providing their username in the Assigned to field

shown in Figure 53.

Available issue states (Opened, Resolved etc.) are globally defined and stored in a svelte

store, and can be changed accordingly there, which propagates through the application. This

acts as an enumerator for the Status field.

Issues details can be viewed (Figure 52) and edited (Figure 53) in the Issue Details page.

56

Figure 52. Issue Details page in the viewing mode.

Figure 53. Issue editing form.

57

5.3.7. Real-time Data Heatmap

The heatmap was one of my key features listed for the Digital Twin/3D Viewer page. The

implementation is quite simple and uses Canvas API (Mozilla, 2024) to draw shapes on HTML

Canvas element, which then serves as a source of texture for a plane object in the scene.

The initial prototype of the heatmap is shown in the image below. It was done by simply

drawing squares of a fixed size with their colour based on the current sensor reading value.

This however was not compelling enough as a heatmap and was not providing any

additional information from the sensor data.

Figure 54. Early experiment with the sensor data heatmap implementation.

In the final implementation, shown in Figure 55, the canvas is divided into a regular grid,

with the colour calculated based on weighted values from all sensors of the same type. Each

sensor value contributes to the calculated value of each cell in the grid based on the inverse

square of the cell – sensor distance. This way I managed to get a full heatmap, which

provides additional information about the environment, as it interpolates the values in

between sensors.

58

Figure 55. Final implementation of the sensor data heatmap – temperature example.

The user can freely adjust the minimum and maximum reading value at the ends of the

gradient scale, which allows for example to identify areas with temperature exceeding

a given threshold (red) or under the threshold (green). Sensor type can be selected from the

dropdown menu.

Figure 56. Final implementation of the sensor data heatmap – humidity example.

59

5.4. Deployment

The project was deployed locally in Kind (Kubernetes in Docker) cluster. The detailed

deployment steps are described in the project documentation1. The diagram below shows

the general flow of the deployment process, from creating the Kind cluster to the application

fully deployed.

Figure 57. SiteVisor system deployment steps in Kind cluster.

1 https://grzpiotrowski.github.io/sitevisor/sitevisor-backend/docs/deployment/kind-cluster/

https://grzpiotrowski.github.io/sitevisor/sitevisor-backend/docs/deployment/kind-cluster/

60

Access to the cluster is managed by NGINX Ingress Controller. The diagram below shows

an overview of the Ingress resources created and their relation to the services in the cluster.

Figure 58. Kubernetes Cluster ingress.

The image below shows all Pods deployed in the cluster after following the described

procedure. The tool used to inspect and manage the cluster is called K9s and I can highly

recommend it.

Figure 59. Kubernetes Pods in the cluster as seen in K9s tool.

5.4.1. Container images

Both the frontend and backend applications needed to be containerised to deploy them

on Kubernetes. The frontend application was dockerised following an article by (Loic, 2023).

61

5.5. Documentation

In the spirit of making the SiteVisor project maintainable and approachable by new users

and by potential developers willing to join the effort, the project documentation was created

along the development and published continuously via a GitHub Action.

Material for MkDocs (Donath, 2024) documentation framework built on top of MkDocs

was chosen as a framework for the documentation pages.

Figure 60. SiteVisor Documentation website hosted on GitHub Pages.

For example. Creation of the cluster and application deployment was fully documented

and can be accessed through the documentation pages. Figure 61 shows a fragment of

Kafka deployment documentation.

62

Figure 61. Project documentation page describing Kafka deployment steps.

6. Reflection

6.1. Learnings

The project involved a lot of new learnings on top of the knowledge from the course. To

design the architecture and plan the implementation I needed to upskill in several areas.

I had a basic knowledge about digital twins, but to realise the vision for the project I had to

learn about the topic in much more detail.

During my work placement, I learned about cloud native concepts, containerisation with

Docker, and about Kubernetes with the focus on Operator pattern. This time I could look at

Kubernetes from a developer perspective. To approach this project, I needed to research and

learn Apache Kafka and Strimzi, which were all new to me. I already knew other messaging

system – MQTT, which could possibly be set as the backbone of the architecture, but

I wanted to learn a new and interesting technology.

I had some knowledge in Three.js prior to starting work on the project as I previously

used it in a simple prototype. This time however I needed to expand on that experience and

consider many more aspects of this library, due to complexity of the planned features.

63

Besides the technologies learned, I could greatly appreciate the power of long periods of

intense focus when trying to implement new features in the project. Often it was not

a straightforward task and required a lot of problem solving and rethinking the approach

chosen initially.

Planning – the thing that I almost dreaded because of many unknowns, has become very

much engraved in my working process. After completing the project, I think it is crucial to

plan ahead, especially when building larger and complex systems.

6.2. Achievements

Most of the goals set for the project were achieved at least to some extent. Some

features were implemented in a different form than they were planned, but since this was

very much a learning project, I am happy with the results and the whole journey. The table

below provides a quick overview of the state of features implementation, when looking back

at Section 3 of this report. To summarise, 21 out of 32 planned features were implemented.

Table 1. Summary of feature implementation.

Feature Implemented
3D visualisation of a building Yes
Camera controls/navigation Yes
Object interactivity Yes
Add rooms, create model from scratch Yes
Upload 3D model GLTF file No
Multiple levels in the building No
Sensors CRUD in 3D Model Yes
Assets CRUD in 3D Model No
Issues/Maintenance Tasks CRUD in 3D model Yes
Assign user to a task/issue Yes
Data dashboard No
Charts with real time sensor data Yes
Charts with archived sensor data No
Notifications and alerts No
Simulated sensors Yes
Heatmap Yes
User roles No
Share projects between users No
Signup/Login Yes

64

Feature Implemented
Project management page Yes
Projects list page + Create new project Yes
Historical data page No
Rooms list page Yes
Room details page Yes
Sensors list page Yes
Sensor details page Yes
Asset list page No
Asset details page No
Issue/Maintenance tasks list page Yes
Issue/Maintenance tasks creation page Yes
Issue/Maintenance tasks details page Yes
Documentation Yes

Additional statistics about the project across all repositories:

• 71 GitHub Issues were opened.

• 54 Issues were closed/completed.

• 31 merged pull requests.

6.3. Overcoming Challenges

6.3.1. Project architecture and structure

It was quite challenging to design and implement an appropriate architecture for the

project. Researching papers and books about Digital Twins was helpful in designing the

overall system. The details of implementation however posed quite a challenge, especially

when it comes to organising the code and building up all components. SvelteKit brings some

structure by design, as it uses the filesystem for routing for example. But then three.js brings

a whole new dimension to the application on top of that and linking these two worlds was

quite challenging. In search for a sustainable project structure, I reviewed existing projects

and templates for mid-sized three.js applications on GitHub and took inspiration from them,

but in the end had to develop my own structure.

6.3.2. Django and MongoDB

MongoDB was planned as the database of choice for the project. However, it is not

supported by Django natively. This means that a third-party extension needs to be used. This

65

posed problems with dependencies being out of date and causing errors. I tried Djongo

package, but it was difficult to set up the planned model. Eventually decided to switch to

PostgreSQL.

In the end, this was a good decision and looking back at the design, it probably makes

more sense for the digital twin architecture. The objects and their relations are known from

the start as everything must be well structured for the model to work.

6.3.3. Kafka-WebSocket connection

There is no native bridge between Kafka and WebSocket. One solution to use long polling

approach, but it is not efficient and not truly real-time. Through searching web I found the

Kafka-Websocket-Proxy project and managed to deploy it and weave into the project.

6.3.4. WebSocket connection to Kubernetes

Initially, I wanted to utilise on of the implementation of Kubernetes Gateway API, like

NGINX Gateway Fabric, but I could not get the Websocket connection to work with outside

of the cluster. For this reason, I decided to switch to NGINX Ingress Controller.

6.4. Future Development

There are many aspects of the application which could be enhanced, or new elements

added. The project could not tackle all the different areas of web development at once, and

some important features had to be abandoned. However, there is always room for future

improvements. Some of which could include:

Focus on Security

Something that was not a key item for this project is safeguarding the system at different

levels.

CI/CD Pipeline

Continuous integration and continuous deployment was something that I wanted to add

to the project, but due to focus on other tasks, I decided to skip this feature and only the

project documentation is continuously deployed on push to the main branch.

66

Enhanced Asset management

The list of features for the project includes asset management, which was partially

implemented through Issues for Sensors and Rooms. Assets in the context of this projects

were also understood as the building itself, together with its components or any equipment

inside it that the user would wish to keep track of. There was an additional object planned to

be implemented – a generic Asset, which could represent any physical object mentioned

earlier. The specific characteristics important for a piece of equipment for example would be

set through a list of custom properties. Unfortunately, due to time constraints, this feature

was not implemented as other tasks were prioritised over it.

Rate Limiting

The original proposal for the project listed many things, that in hindsight could likely

make for more than one project.

More Digital Twin Features

There are many thing that I could see implemented to enhance the Digital Twin

experience, among many:

• Collision detection between rooms to prevent overlapping.

• Levels in the building.

• Dynamically updating objects position based on X, Y, Z sensor data, for example from

an accelerometer.

Shared Web Worker for Websockets

Currently the Websocket clients in the application are instantiated in the Svelte store,

from where they can be accessed globally. I have researched other options briefly and would

like to set up websocket connections in a Web Worker, so they could be made accessible

even when the user has multiple tabs with the application opened. Currently the websocket

connections would be duplicated in such scenario.

User Roles

Unfortunately, I did not implement user roles as I planned initially. This is something that

I would like to see in the application in the future.

67

Bibliography

Amazon, 2024. AWS IoT - AWS IoT TwinMaker. [Online]

Available at: https://aws.amazon.com/iot-twinmaker/

[Accessed 5 February 2024].

Amazon, 2024. AWS IoT TwinMaker - Features. [Online]

Available at: https://aws.amazon.com/iot-twinmaker/features/

[Accessed 4 February 2024].

Autodesk, 2022. Autodesk-Forge - Forge Digital Twin Demo. [Online]

Available at: https://github.com/Autodesk-Forge/forge-digital-twin

[Accessed 9 February 2024].

CIBSE, 2018. CIBSE Journal - Sensor sensibility: Newcastle University’s Urban Sciences

Building. [Online]

Available at: https://www.cibsejournal.com/technical/ubs/

[Accessed 4 February 2024].

CloudNativePG, 2024. CloudNativePG - Documentation - Quickstart. [Online]

Available at: https://cloudnative-pg.io/documentation/1.22/quickstart/

[Accessed 25 March 2024].

Dirksen, J., 2023. Learn Three.js. Fourth Edition ed. Birmingham: Packt Publishing.

Donath, M., 2024. Material for MkDocs - Getting started. [Online]

Available at: https://squidfunk.github.io/mkdocs-material/getting-started/

[Accessed 8 February 2024].

Fu, G., Zhang, Y. & Yu, G., 2021. A Fair Comparison of Message Queuing Systems. IEEE

Access, Volume 9, pp. 421-432.

Galbraith, B., 2023. Bloomfire - Data vs. Information: What’s the Difference?. [Online]

Available at: https://bloomfire.com/blog/data-vs-information/

[Accessed 3 February 2024].

GitHub, 2023. GitHub Docs: GitHub Issues - Projects - Learning about Projects. [Online]

Available at: https://docs.github.com/en/issues/planning-and-tracking-with-

68

projects/learning-about-projects/about-projects

[Accessed 8 February 2023].

Immersive Web, 2024. Getting started building a WebXR Website. [Online]

Available at: https://immersiveweb.dev/#three.js

[Accessed 8 February 2024].

Joshi, S. D., 2023. Digital Twin Solution Architecture. In: M. Vohra, ed. Digital Twin

Technology - Fundamentals and Applications. s.l.:John Wiley & Sons, Scrivener Publishing,

pp. 47-76.

kpmeen, 2023. Kafka WebSocket Proxy. [Online]

Available at: https://kpmeen.gitlab.io/kafka-websocket-proxy/

[Accessed 3 February 2024].

Loic, J., 2023. Dockerize SvelteKit with Node.js. [Online]

Available at: https://medium.com/@loic.joachim/dockerize-sveltekit-with-node-adapter-

62c5dc6fc15a

[Accessed 31 March 2024].

Microsoft, 2022. Azure Documentation - IoT - 3D Scenes Studio (preview) for Azure Digital

Twins. [Online]

Available at: https://learn.microsoft.com/en-us/azure/digital-twins/concepts-3d-scenes-

studio

[Accessed 5 February 2024].

Microsoft, 2024. Azure Documentation - IoT - Azure Digital Twins. [Online]

Available at: https://learn.microsoft.com/en-us/azure/digital-twins/overview

[Accessed 5 February 2024].

Mozilla, 2024. MDN Web Docs - Drawing shapes with canvas. [Online]

Available at: https://developer.mozilla.org/en-

US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes

[Accessed 29 March 2024].

Nölle, C. et al., 2022. Digital Twin-enabled Application Architecture for the Process Industry.

s.l., s.n.

69

Parrott, A. & Warshaw, L., 2017. Industry 4.0 and the digital twin, s.l.: Deloitte University

Press.

Rajamurugu, N. & Karthik, M. K., 2023. Introduction, History and Concept of Digital Twin. In:

M. Vohra, ed. Digital Twin Technology - Fundamentals and Applications. s.l.:John Wiley &

Sons, Scrivener Publishing, pp. 19-32.

Rosso, J., Lander, R., Brand, A. & Harris, J., 2021. Production Kubernetes - Building Successful

Application Platforms. 1st ed. s.l.:O’Reilly Media.

Savaglio, C. et al., 2023. Edge Intelligence Against COVID-19: A Smart University Campus

Case Study. In: F. Cicirelli, G. Spezzano, A. Guerrieri & A. Vinci, eds. IoT Edge Solutions for

Cognitive Buildings. s.l.:Springer, pp. 221-228.

Scott, D., Gamov, V. & Klein, D., 2022. Kafka in Acion. NY: Manning Publications Co..

Strimzi, 2024. Strimzi Documentation. [Online]

Available at: https://strimzi.io/docs/operators/latest/overview

[Accessed 28 03 2024].

Three.js, 2024. Three.js Manual - Fundamentals. [Online]

Available at: https://threejs.org/manual/#en/fundamentals

[Accessed 10 February 2024].

UKCRIC, 2023. Newcastle Urban Observatory - Urban Sciences Building. [Online]

Available at: https://newcastle.urbanobservatory.ac.uk/dash/usb/

[Accessed 4 February 2024].

70

Appendix A – Export from GitHub Project Roadmap (formatted)

Iteration 1

07/01/2024
Create a starter Three.js scene with basic
interactivity https://github.com/grzpiotrowski/sitevisor/issues/2

09/01/2024 Implement adding objects to the scene https://github.com/grzpiotrowski/sitevisor/issues/5

Iteration 2
16/01/2024 Create developer documentation https://github.com/grzpiotrowski/sitevisor/issues/10

16/01/2024 Create user documentation https://github.com/grzpiotrowski/sitevisor/issues/9

18/01/2024 Dockerise the application https://github.com/grzpiotrowski/sitevisor/issues/17

19/01/2024 App deployment on kubernetes https://github.com/grzpiotrowski/sitevisor/issues/18

22/01/2024 Establish a sustainable project structure https://github.com/grzpiotrowski/sitevisor/issues/1

Iteration 3
28/01/2024 Interim Report https://github.com/grzpiotrowski/sitevisor-project/issues/1

11/02/2024 Showcase Entry Part 1 https://github.com/grzpiotrowski/sitevisor-project/issues/2

Iteration 4
13/02/2024 SiteVisor backend API https://github.com/grzpiotrowski/sitevisor-backend/issues/11

14/02/2024
Implement exporting the scene to the
backend https://github.com/grzpiotrowski/sitevisor/issues/3

14/02/2024 Build API for database CRUD https://github.com/grzpiotrowski/sitevisor-backend/issues/5

15/02/2024
Include documentation from sitevisor-
backend https://github.com/grzpiotrowski/sitevisor/issues/22

15/02/2024 SiteVisor Service https://github.com/grzpiotrowski/sitevisor/issues/37

15/02/2024 Implement database for scene objects https://github.com/grzpiotrowski/sitevisor-backend/issues/6

16/02/2024
Implement importing the objects from the
backend https://github.com/grzpiotrowski/sitevisor/issues/4

Iteration 5
29/02/2024 Add user accounts and projects https://github.com/grzpiotrowski/sitevisor/issues/6

03/03/2024 Enhance the UI with a CSS framework https://github.com/grzpiotrowski/sitevisor/issues/11

03/03/2024 Rooms API https://github.com/grzpiotrowski/sitevisor-backend/issues/10

03/03/2024 Users API https://github.com/grzpiotrowski/sitevisor-backend/issues/12

03/03/2024 Projects API https://github.com/grzpiotrowski/sitevisor-backend/issues/13

05/03/2024 Singup/login pages https://github.com/grzpiotrowski/sitevisor/issues/24

05/03/2024 Projects list page https://github.com/grzpiotrowski/sitevisor/issues/25

05/03/2024 3D Viewer/Digital Twin page https://github.com/grzpiotrowski/sitevisor/issues/36

05/03/2024 Sensors API https://github.com/grzpiotrowski/sitevisor-backend/issues/9

05/03/2024 SiteVisor Frontend Views https://github.com/grzpiotrowski/sitevisor/issues/41

Iteration 6
08/03/2024 Add tests https://github.com/grzpiotrowski/sitevisor-backend/issues/16

08/03/2024 Fix: Helper Grid middle line colour https://github.com/grzpiotrowski/sitevisor/issues/45

09/03/2024 Object creation dialog https://github.com/grzpiotrowski/sitevisor/issues/49

10/03/2024 Create Room by dimensions https://github.com/grzpiotrowski/sitevisor/issues/46

13/03/2024 Implement websocket client https://github.com/grzpiotrowski/sitevisor/issues/21

https://github.com/grzpiotrowski/sitevisor/issues/2
https://github.com/grzpiotrowski/sitevisor/issues/5
https://github.com/grzpiotrowski/sitevisor/issues/10
https://github.com/grzpiotrowski/sitevisor/issues/9
https://github.com/grzpiotrowski/sitevisor/issues/17
https://github.com/grzpiotrowski/sitevisor/issues/18
https://github.com/grzpiotrowski/sitevisor/issues/1
https://github.com/grzpiotrowski/sitevisor-project/issues/1
https://github.com/grzpiotrowski/sitevisor-project/issues/2
https://github.com/grzpiotrowski/sitevisor-backend/issues/11
https://github.com/grzpiotrowski/sitevisor/issues/3
https://github.com/grzpiotrowski/sitevisor-backend/issues/5
https://github.com/grzpiotrowski/sitevisor/issues/22
https://github.com/grzpiotrowski/sitevisor/issues/37
https://github.com/grzpiotrowski/sitevisor-backend/issues/6
https://github.com/grzpiotrowski/sitevisor/issues/4
https://github.com/grzpiotrowski/sitevisor/issues/6
https://github.com/grzpiotrowski/sitevisor/issues/11
https://github.com/grzpiotrowski/sitevisor-backend/issues/10
https://github.com/grzpiotrowski/sitevisor-backend/issues/12
https://github.com/grzpiotrowski/sitevisor-backend/issues/13
https://github.com/grzpiotrowski/sitevisor/issues/24
https://github.com/grzpiotrowski/sitevisor/issues/25
https://github.com/grzpiotrowski/sitevisor/issues/36
https://github.com/grzpiotrowski/sitevisor-backend/issues/9
https://github.com/grzpiotrowski/sitevisor/issues/41
https://github.com/grzpiotrowski/sitevisor-backend/issues/16
https://github.com/grzpiotrowski/sitevisor/issues/45
https://github.com/grzpiotrowski/sitevisor/issues/49
https://github.com/grzpiotrowski/sitevisor/issues/46
https://github.com/grzpiotrowski/sitevisor/issues/21

71

Iteration 7
17/03/2024 Add Websocket server https://github.com/grzpiotrowski/sitevisor-backend/issues/2

19/03/2024 Implement sensor object interactivity https://github.com/grzpiotrowski/sitevisor/issues/16

19/03/2024 Projects manager page https://github.com/grzpiotrowski/sitevisor/issues/26

19/03/2024
Create a simple simulated sensor for
testing https://github.com/grzpiotrowski/sitevisor-sensors/issues/1

20/03/2024 Sensor list page https://github.com/grzpiotrowski/sitevisor/issues/33

20/03/2024 Sensor details page https://github.com/grzpiotrowski/sitevisor/issues/34

20/03/2024 Data chart for sensor https://github.com/grzpiotrowski/sitevisor/issues/55

Iteration 8
24/03/2024 Showcase Entry Part 2 https://github.com/grzpiotrowski/sitevisor-project/issues/3

24/03/2024 Room interactivity https://github.com/grzpiotrowski/sitevisor/issues/58

25/03/2024 Maintenance tasks list page https://github.com/grzpiotrowski/sitevisor/issues/30

25/03/2024 Maintenance task creation page https://github.com/grzpiotrowski/sitevisor/issues/31

25/03/2024 Maintenance task details page https://github.com/grzpiotrowski/sitevisor/issues/32

25/03/2024 Maintenence tasks API https://github.com/grzpiotrowski/sitevisor-backend/issues/8

27/03/2024 Room data page https://github.com/grzpiotrowski/sitevisor/issues/35

27/03/2024 Room - Sensor relation https://github.com/grzpiotrowski/sitevisor-backend/issues/25

Iteration 9

28/03/2024
Selecting a room after creating new
sensor fails https://github.com/grzpiotrowski/sitevisor/issues/65

29/03/2024 Heatmap from Sensor data https://github.com/grzpiotrowski/sitevisor/issues/54

29/03/2024
Fix: Sensor not assigned to a room when
created in 2D mode https://github.com/grzpiotrowski/sitevisor/issues/67

30/03/2024
Fix: Warning: Too many active WebGL
contexts https://github.com/grzpiotrowski/sitevisor/issues/53

31/03/2024 Add Asset management functionality https://github.com/grzpiotrowski/sitevisor/issues/12

02/04/2024 Physical sensor client https://github.com/grzpiotrowski/sitevisor-sensors/issues/3

02/04/2024 Final Project Submission (code) https://github.com/grzpiotrowski/sitevisor-project/issues/4

04/04/2024 Final Project Submission (final report) https://github.com/grzpiotrowski/sitevisor-project/issues/5

https://github.com/grzpiotrowski/sitevisor-backend/issues/2
https://github.com/grzpiotrowski/sitevisor/issues/16
https://github.com/grzpiotrowski/sitevisor/issues/26
https://github.com/grzpiotrowski/sitevisor-sensors/issues/1
https://github.com/grzpiotrowski/sitevisor/issues/33
https://github.com/grzpiotrowski/sitevisor/issues/34
https://github.com/grzpiotrowski/sitevisor/issues/55
https://github.com/grzpiotrowski/sitevisor-project/issues/3
https://github.com/grzpiotrowski/sitevisor/issues/58
https://github.com/grzpiotrowski/sitevisor/issues/30
https://github.com/grzpiotrowski/sitevisor/issues/31
https://github.com/grzpiotrowski/sitevisor/issues/32
https://github.com/grzpiotrowski/sitevisor-backend/issues/8
https://github.com/grzpiotrowski/sitevisor/issues/35
https://github.com/grzpiotrowski/sitevisor-backend/issues/25
https://github.com/grzpiotrowski/sitevisor/issues/65
https://github.com/grzpiotrowski/sitevisor/issues/54
https://github.com/grzpiotrowski/sitevisor/issues/67
https://github.com/grzpiotrowski/sitevisor/issues/53
https://github.com/grzpiotrowski/sitevisor/issues/12
https://github.com/grzpiotrowski/sitevisor-sensors/issues/3
https://github.com/grzpiotrowski/sitevisor-project/issues/4
https://github.com/grzpiotrowski/sitevisor-project/issues/5

72

Appendix B – Ethical Approval Checklist

Included on the next page.

